Search results

Search for "sonodynamic therapy" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • in mice treated with bare NPs began to gradually increase in size after day 12 of treatment, whereas the biomimetic NPs still exhibited efficient antitumor effects [80]. In contrast to the poor tissue penetration of PDT, ultrasound-based sonodynamic therapy (SDT) shows stronger tissue penetration
PDF
Album
Review
Published 27 Feb 2023

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • conversion efficiency and by an accumulation of photosensitizers in tumor sites. ROS-related cancer therapeutics such as photodynamic therapy, sonodynamic therapy, and chemical dynamic therapy showed great potential to significantly enhance the precision and efficacy of cancer therapeutics [14]. Neoplastic
  • alone exhibited continued tumor growth. The aforementioned results confirm the biocompatibility of this new titania-based nanomaterial and provide new strategies for subcellular organelle-targeted, minimal/non-invasive cancer treatment [116]. Sonodynamic therapy (SDT) generates ROS in deep tissue for
  • treat cancer cells, the cancer cells predominantly took up avidin-TiO2. Thus the treatment using ultrasound became site-specific. Photodynamic and sonodynamic therapy have the advantages of low cytotoxicity and genotoxicity. Therefore, these therapies are strong alternatives to classical radiotherapy
PDF
Album
Review
Published 14 Feb 2022

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • components in water-based media, which plays a role in both therapeutic and diagnostic applications [148][149]. Due to the toxicity of free radicals, some chemical compounds called sonosensitizers have been used as sonodynamic therapy agents which produce synergistic effects with US irradiation by generating
  • complexes with both therapeutic and diagnostic potentials [148][152]. The primary reaction in sonodynamic therapy is the dissociation of water into HO• radicals or the formation of singlet oxygen (1O2) within the targeted medium. It is thought that US cavitation and thermal effect are the leading causes of
  • ]. Titanium-based NPs have been investigated for sonodynamic therapy [149][154]. You et al. produced hydrophilized titanium dioxide NPs (HTiO2) and demonstrated its cytotoxic potential and ROS generation under US treatment. Results showed a 29.7-fold increase in 1O2 concentration in the treated sample
PDF
Album
Review
Published 11 Aug 2021
Other Beilstein-Institut Open Science Activities